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1 Introduction
The interactions of and between electrons in matter are the cause of what is known as van der
Waals forces [10]. These forces become significant in soft matter systems. To predict the properties
of such systems equations involving the electron interactions must be solved, and by the many
body nature of the problem it makes the solution of such equations necessarily numeric. The
random phase approximation method accounts for electron correlation through approximation
and produces good results, however it becomes computationally difficult to solve [4].

Wavelet theory, a relatively new tool in mathematics, has only recently found numerous appli-
cations in physics [5], and audiovisual processing and compression [9]. The concept of multireso-
lution analysis, a fundamental part of wavelet theory, has allowed for the generation of a limitless
array of wavelet bases suited to all kinds of problems.

This project employed several simple wavelet bases in the transformation of the matrices in-
volved in the random phase approximation with the aim of finding a basis that makes those
matrices diagonal and sparse, and thus relatively easier to solve.

2 The Physical Problem
First-principle predictions of phenomena are important in physics. Cohesive energy of atoms in
solids and molecules in solid state physics, materials science, and nanoscience generally depends
on the quantum mechanical groundstate energy of the electrons in a system of interest. Prediction
from first-principles of such a property of systems is made difficult by the fact that the interac-
tion and correlation of the motion of electrons makes the calculation of this energy a quantum
mechanical Many Body Problem (MBP), which is known to be insoluble.

A widely used technique to solve this problem is known as the Local Density Approximation
(LDA). LDA works well for solids and large molecules where the correlations between electrons
over more than a typical atomic spacing are insignificant, but for systems where such distant
correlations are important the LDA fails [3]. These distant interactions lead to an energy known as
the van der Waals energy, which causes soft van der Waals forces. These forces become significant
in “soft” matter such as graphite. (Graphitic systems are currently an active area of research as
they are being investigated as hydrogen storage systems.)

From Many Body Theory we have the adiabatic connection-fluctuation-dissipation theorem
(ACF-FDT), which shows that the groundstate electron energy can be found by integrating a
“density-density response” function χ (r, r′, t, t′). This function describes how the number density
of electrons is changed at position r and time t when a small external potential is applied at
position r′ and time t′. This shows that the interactions between electrons can be found from the
way the electrons respond to external influences. This is still an MBP, but a simple approximation
known as the Random Phase Approximation (RPA) produces fairly good results, leading through
ACF-FDT back to a prediction for the groundstate electron energy which includes the distant
interactions between electrons that the LDA misses.

Random phase approximation works by splitting χ into two parts. The first part, χ0, is the
density-density response function of a theoretical system in which the electron interactions have
been replaced with a single electron potential — the LDA potential. The density perturbation χ0
is just the sum of the density perturbations of many independent single body Shrödinger solutions.
A change in potential δV ext will produce a change in electron density δn0 at a point z that, through
first order perturbation theory, is given by

δn0 (z, ω) =
∫
χ0 (z, z′, ω) δV ext (z′, ω) dz′

For simplicity we work in a single spacial dimension considering “sheets” of charge at positions
denoted by z and z′, and instead of time delay t− t′ we use frequency ω by a Fourier transform.
The physics of this system resembles layered compounds. A classic test problem for investigating
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quantum many-electron theories is a layered system like this called a “jellium slab”, where a slab
of uniform density of positive charge “holds” the mobile electrons.

The calculation of χ0, while messy, is achievable even for complex systems. χ0 is known as the
“independent-electron” or Kohn-Sham response function, and is sometimes alternatively denoted
χs or χKS.

The second part of the χ function in the RPA is an approximation of the electron interac-
tion. The density response due to electron interaction is caused by a potential generated by the
perturbed density. This internal potential is given by

δV int (z, ω) =
∫
V coul (z, z′) δn (z′, ω) dz′ (1)

where V coul is the Coulomb potential between electrons and δn (z′, ω) is the change in density at
z′.

We know the Coulomb potential between two uniformly charged sheets is

V coul (z, z′) = −2πe2 |z − z′|

and has the property that
d2

dz2V
coul (z, z′) = −4πe2δ (z − z′)

where δ (z − z′) is the Dirac delta function. From the independent electron response function we
now arrive at

δn (z, ω) =
∫
χ0 (z, z′, ω) δV tot (z′, ω) dz′ (2)

where
δV tot (z′, ω) = δV ext (z′, ω) + δV int (z′, ω) (3)

is the total change in potential. This is an approximation since δV tot represents the effect on
an infinitesimal sheet of test charge that does not disturb the source charges. In reality the test
charge is not infinitesimal and does affect the source in a way which the RPA does not account
for, but most of the necessary physics is present in the ACF-FDT and the approximation does
produce good results.

Combining Equations 1, 2, and 3 we have

δn (z) =
∫
χ0 (z, z′, ω)

(
δV ext (z′, ω) +

∫
V coul (z′, z′′) δn (z′′, ω) dz′′

)
dz′ (4)

This is one form of the “RPA screening equation”. By solving this integral equation we can deduce
χ.

Alternatively, we can take the second derivative of Equation 1 and turn the problem into a
Poisson’s equation, thus

d2

dz2 δV
int (z, ω) = 2πe2δn (z, ω)

= 2πe2
∫
χ0 (z, z′, ω)

(
δV ext (z′, ω) + δV int (z′, ω)

)
dz′ (5)

by Equations 2 and 3. This is another form of the RPA screening equation, and it is a differentio-
integral equation in δV int. From this we can generate δn and hence find χ. We could solve either
Equations 4 or 5 and eventually result in, through the ACF-FDT, a groundstate energy that
includes van der Waals type long-ranged electron interactions. [2]

For this project we consider using numerical techniques to solve Equation 5. The problem with
this approach is that, while the d2

dz2 operator is very well localised, the χ0 function is not. This
makes the matrices used to solve the equation dense and thus difficult and time-consuming to
invert, especially with large systems. In an effort to solve this problem we look at reinterpreting
χ0 and d2

dz2 using wavelet bases in the hope that they make those matrices easier to solve.
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3 Introduction to Wavelets
Wavelets are a family of bases. There are many different types of wavelets, all with different
properties which suit different types of problems. The simplest and easiest to understand is the
Haar wavelet.

3.1 Haar Wavelets
The most basic wavelet transform is the Haar transform. A simplified version of the Haar transform
algorithm is to split an input signal into two output subsignals, one that records the average of
successive pairs of samples in the input signal, and another that records their difference. As an
example, derived from Walker [9, p. 3], say you have a signal sampled with the values 4, 6, 10,
12, 8, 6, 5, and 5. The averages of pairs of these samples are 5, 11, 7, and 5, and their differences
are −2, −2, 2, and 0. So this simplified Haar transform would leave you with an output signal
consisting of 5, 11, 7, 5, −2, −2, 2, and 0. This data completely represents the original signal, and
the process used to create these samples can be easily reversed to obtain the original samples.

The real Haar transform extends this process slightly by taking, instead of straight averages
and differences, the sum of pairs divided by

√
2 to give a “trend” subsignal, and the difference of

pairs over
√

2 to give a “fluctuation” subsignal. This results in the transform signal having the
same energy (sum of squares) as the original signal, but most of that energy has been shifted into
the trend subsignal, or “compacted” [9, p. 6].

The Haar transform can be written in terms of inner products of vectors. If we have our signal
in vector notation as f = (4, 6, 10, 12, 8, 6, 5, 5), the Haar transform would have two sets of vectors,
“scaling functions” V 1

1 =
(

1√
2 ,

1√
2 , 0, 0, 0, 0, 0, 0

)
, V 1

2 =
(

0, 0, 1√
2 ,

1√
2 , 0, 0, 0, 0

)
, . . . , corresponding

to the sums part, and “wavelets” W 1
1 =

(
1√
2 ,−

1√
2 , 0, 0, 0, 0, 0, 0

)
, W 1

2 =
(

0, 0, 1√
2 ,−

1√
2 , 0, 0, 0, 0

)
,

. . . , corresponding to the differences part. All the scaling functions and wavelets can be produced
from the first scaling function/wavelet by translating the entries 2n places to the right. It can be
shown that the samples in the trend subsignal an = f · V 1

n , and similarly for the samples in the
fluctuation subsignal dn = f ·W 1

n .
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Figure 1: Haar Wavelet

3.2 Multiresolution Analysis
Multiresolution analysis (MRA) is the heart of wavelet techniques [9, p. 13]. The concept of
MRA is that there are multiple fluctuation subspaces. Consider the example above. If we have
the real Haar trend subsignal

(
5
√

2, 11
√

2, 7
√

2, 5
√

2
)
we could take its Haar transform and split it

into trend and fluctuation subsignals just like was done for the original signal. This would result
in a complete representation of the original signal that involves a first level fluctuation subsignal
(from 5th to 8th entry), a second level fluctuation subsignal (3rd and 4th entries), and a second
level trend subsignal (1st and 2nd entries). This is known as a “2-level transform”, and it further
compacts the energy of the original signal.
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Higher level transforms of signals can be taken. Due to sample nature, however, there is a
limit to the resolution level at which a signal can be transformed. This limit depends on both
the number of samples in the trend subsignal and the “support length” (described in the next
section) of the wavelet basis used. Where n is the number of entries in the trend subsignal and s
is the support of the wavelet basis, a transform can only be performed while n > s and n is wholly
divisible by 2. For example, a signal of 128 samples under a wavelet with support length 6 can
only be transformed up to the 5th level. This limits the number of samples in a signal which is
to be wavelet transformed to multiples of two, the size at which the highest resolution transforms
can be taken being powers of two.

3.3 Beyond Haar Wavelets
The following figures and Figure 1 on the preceding page for the Haar Wavelet were generated
from wavelet coefficients and via the method described in Goedecker [6, p. 16]. All the wavelets
considered in this project have compact support (a finite number of coefficients) and are orthogonal.

Daubechies’ Wavelets

Just like Haar wavelets, Daubechies wavelets split a signal into what could be considered running
average and running difference subsignals [9, p. 29]. The main difference is that the Daubechies
transform takes into account not just two adjacent samples, but four, six, ten, or even twenty
adjacent samples (really, any multiple of two adjacent samples).

The process of performing the transform is the same as described for the Haar transform; V
and W vectors are generated by translation of entries in each by two places (wrapping the entries
where necessary), and the inner products are taken. The only difference between the Daubechies
wavelet transform and the Haar wavelet transform is the way V andW are defined. The entries in
the V (scaling) and W (wavelet) Daub4 vectors, for example, can be seen in Figure 2a and Figure
2b, respectively. The technical details of the definition of Daubechies wavelets are omitted here.
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Figure 2: Daub4 Wavelet

Other Daubechies wavelets are defined similarly. The N in DaubN indicates the number of
adjacent samples in the signal that are considered, the number of entries in the V and W vectors,
known as the wavelet’s “support length”.
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Figure 3: Daub6 Wavelet
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Figure 4: Daub10 Wavelet
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Figure 5: Daub20 Wavelet

Coiflets

Coiflets are similar to Daubechies’ wavelets except that the trend values from a coiflet transform
are a much closer match to the original signal [6, p. 48]. The CoifN family is constructed similarly
to the DaubN family.
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Figure 6: Coif6 Wavelet
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Figure 7: Coif12 Wavelet

Symmlets

It has been proved that no compactly supported wavelet basis other than the Haar basis can be
both orthogonal and symmetric [1, p. 252]. Symmlets are an effort to get as close to symmetry
as possible [7].
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Figure 8: Sym4 Wavelet
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Figure 9: Sym7 Wavelet

More

There are many many other numbers, families and types of wavelets. For example, others in the
Daubechies, Coiflet, or Symmlet families exist and could be considered. There are also more fam-
ilies of orthogonal wavelets that have not been shown here. Beyond that, there are biorthogonal,
spline, second-generation, and other advanced wavelet families [1, 6, 8] that will not be examined
in this project.

3.4 Two-Dimensional Signal Transforms
The wavelet transforms shown thus far have only considered one-dimensional signals akin to audio
signals. Wavelet transforms can be easily expanded into two-dimensional signals akin to images
or matrices. The wavelet transform of an image or matrix is simply a transform of each column of
the image, and then a transform of each row of the resulting image [9, p. 67]. Transforming rows
before columns is equivalent.

3.5 Transform Methods
There are three methods for wavelet transforms in two dimensions:

Standard

The normal transform described above.

Packet

When performing MRA, instead of only transforming the trend subsignal when transforming to
a higher level, the wavelet packet transform also transforms the fluctuation subsignal. An n-level
packet transform will thus generate 2n subsignals, instead of the usual n + 1 subsignals. This
method can also be applied to one-dimensional signals.

Non-Standard

This involves the artificial insertion of zeros into the result of a transform between successive level
transforms. It is best considered in the context of a wavelet transform of an operator matrix.
Most of the entries in such a matrix are zero, except for some near or on the diagonal. With such
a matrix each successive level is “coupled”. Take for example the Daub4 transform of the d2

dz2

operator matrix shown below.
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→4

Figure 10: Coupled Resolution Levels in the Daub4 Transform of d2

dz2

The coupling effect is apparent in the top left corner of the 4-level transform shown in Figure
10. For each level the fluctuation values for the horizontal transform are used in the next vertical
transform. By artificially inserting zeros between the fluctuation and trend signals in each level
we can completely decouple different resolution levels [6, p. 40]. The process is illustrated in
Figure 11.

(a) Transform
→

(b) Insert Zeros
→

(c) Transform
→

(d) Insert Zeros

Figure 11: Decoupled Resolution Levels in the Daub4 Non-Standard Transform of d2

dz2

This decoupling of levels produces matrices that are sparser and more diagonal than the stan-
dard transform, thus making them easier to invert. The drawback, however, is that the matrices
are now larger than the original, and there is some redundancy introduced. It is important to
consider comparing the efficiency of inversion gained from the decoupling of resolutions to the
efficiency lost due to the matrix growing larger.

4 Applying Wavelets to the χ0 and d2

dz2 Matrices
4.1 Aim
For this project we are given a χ0 matrix for a quasi-1-dimensional system. This matrix is diagonal,
but quite dense with significant values over almost the entire matrix (see Section 4.3). The aim of
this project is to investigate a number of different wavelet transforms of the χ0 and d2

dz2 matrices
in order to find a transform that makes both these matrices sparse and diagonal, and thus easier
to solve.

4.2 Measuring Success
We need a way to measure the solubility of a transformed matrix in order to determine if a par-
ticular transform has made our problem any easier. One way this can be achieved is to determine
the “density” of the matrix. This is done by counting the number of entries in the matrix whose
absolute value is above some small threshold value. (This is technically not a density — it’s more
akin to flux — but for the most part this is irrelevant.) This method effectively gives a count
of how many significant entries are in the matrix — the higher the number, the more entries in
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the matrix are significant, and the more difficult the matrix will be to solve. The code to do this
can be found in Appendix B1. The method used in this code also considers entries less than the
threshold by adding to the result the ratio of the entry to the threshold. For this project, the
threshold was chosen to be 10−4.

There is a flaw with this method. Matrices with significant values away from the diagonal are
considerably harder to solve than matrices with significant values near the diagonal. This fact
is not taken into consideration by the density function, and thus two matrices which have major
differences in the ease of which they can be solved, owing to the location of significant values, may
have the same density.

For this reason, visual inspection is still important. To this end we will also consider a “sig-
nificance image”, a pictorial representation of a matrix whose elements are the absolute of the
respective elements of the measured matrix, and whose grey-scale-map will be in the range from
0 to a small threshold (10−4), 0 being white and the threshold, and any value greater than that
threshold, being black. The code for this can be seen in Appendix B10. These images allow us to
see where in a matrix the significant entries appear. This qualitative measurement, coupled with
the quantitative density function, should give a reasonable idea as to how easy a particular matrix
will be to solve.

4.3 The Original Matrices
The original χ0 and d2

dz2 matrices are plotted here for comparison to the transforms that will be
shown in the next section. It should be noted that the original χ0 matrix has 1292 data points
due to the nature of the algorithms used to generate it. The last row and column, which consist
entirely of zeros, were discarded to achieve a size of 1282 to suit wavelet transforms of multiple
resolutions (see Section 3.2).

The colours in signal images range from red (minimum) to blue (maximum) with the remain-
der of the visible spectrum in between. Do note that the same colour will likely have a different
corresponding value between images. The significance map (Sig. Map), however, has white corre-
sponding to 0 and black corresponding to |Mx,y| ≥ 10−4 where Mx,y is the matrix entry at x and
y, and thus they are consistent between images and can be compared.

(a) χ0 (b) d2

dz2

(c) χ0 Sig. Map (d) d2

dz2 Sig. Map

Figure 12: Original Signals
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By visual inspection we can see that the d2

dz2 signal is already very diagonal and sparse, while
the χ0 signal is also diagonal, but is very dense. It would be accurate to suggest that a wavelet
basis that does well at making the χ0 matrix sparse runs the risk of making the d2

dz2 matrix dense.
We will try a number of different wavelet bases in the hope of finding one or more that may be
suitable. The following sections show these transforms visually, followed by comparisons of density
functions of all the transforms.

4.4 The Haar Transform
Standard

In the figure on this page, each successive resolution is pictured next to each other, increasing from
left to right, with a corresponding significance image underneath each. Not all possible resolutions
are listed — only the first four are given — though all possible resolutions were considered and
their densities appear in the graphs in Section 4.8.

Figure 13: Haar Standard Transform of χ0

Figure 14: Haar Standard Transform of d2

dz2
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The standard Haar transform does not do particularly well with either the χ0 or the d2

dz2

matrices. It seems to make both matrices less diagonal, especially the d2

dz2 matrix.

Packet

Figure 15: Haar Packet Transform of χ0

Figure 16: Haar Packet Transform of d2

dz2

The Haar packet transform is also no good. It spreads significant values away from the diagonal.
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Non-Standard

Figure 17: Haar Non-Standard Transform of χ0

Figure 18: Haar Non-Standard Transform of d2

dz2

The non-standard Haar transform is quite good, especially for the d2

dz2 matrix, which remains
diagonal and reasonably sparse. The χ0 behaves similarly, though is still a bit dense.
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4.5 Daubechies’ Wavelets
Standard

Figure 19: Daub4 Standard Transform of χ0

Figure 20: Daub4 Standard Transform of d2

dz2
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Figure 21: Daub6 Standard Transform of χ0

Figure 22: Daub6 Standard Transform of d2

dz2
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Figure 23: Daub10 Standard Transform of χ0

Figure 24: Daub10 Standard Transform of d2

dz2
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Figure 25: Daub20 Standard Transform of χ0

Figure 26: Daub20 Standard Transform of d2

dz2

We begin to see how the χ0 tends to prefer transforms with wider support, but the d2

dz2 prefers
shorter support. As the length of the Daubechies wavelet increases the χ0 transforms become
more sparse, but at the same time the d2

dz2 transforms become more dense. The trick will be to
find a good compromise between the two.
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Packet

Figure 27: Daub4 Packet Transform of χ0

Figure 28: Daub4 Packet Transform of d2

dz2
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Figure 29: Daub6 Packet Transform of χ0

Figure 30: Daub6 Packet Transform of d2

dz2
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Figure 31: Daub10 Packet Transform of χ0

Figure 32: Daub10 Packet Transform of d2

dz2
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Figure 33: Daub20 Packet Transform of χ0

Figure 34: Daub20 Packet Transform of d2

dz2

Though it makes for some interesting patterns in the significance maps, the packet transform here
seems quite inappropriate for what we want to achieve. All packet transforms thus far have taken
something reasonably sparse and turned it into something very dense. This is the exact opposite
of what we are aiming for.
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Non-Standard

Figure 35: Daub4 Non-Standard Transform of χ0

Figure 36: Daub4 Non-Standard Transform of d2

dz2
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Figure 37: Daub6 Non-Standard Transform of χ0

Figure 38: Daub6 Non-Standard Transform of d2

dz2
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Figure 39: Daub10 Non-Standard Transform of χ0

Figure 40: Daub10 Non-Standard Transform of d2

dz2
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Figure 41: Daub20 Non-Standard Transform of χ0

Figure 42: Daub20 Non-Standard Transform of d2

dz2

The non-standard transform, on the other hand, is looking promising. The matrices remain
diagonal and, while the d2

dz2 does become more dense particularly with long support, the χ0
becomes quite less dense.
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4.6 Coiflets
Standard

Figure 43: Coif6 Standard Transform of χ0

Figure 44: Coif6 Standard Transform of d2

dz2
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Figure 45: Coif12 Standard Transform of χ0

Figure 46: Coif12 Standard Transform of d2

dz2

The standard transform seems to move significant values towards the top and the left, and spreads
them around. Because of the coupled nature of resolutions in the standard transform this is to be
expected (see Section 3.5). This does make such a transform less desirable.
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Packet

Figure 47: Coif6 Packet Transform of χ0

Figure 48: Coif6 Packet Transform of d2

dz2
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Figure 49: Coif12 Packet Transform of χ0

Figure 50: Coif12 Packet Transform of d2

dz2

Packet transforms seem to send significant values all over the resulting matrix. Packet transforms
would be a very poor approach to this problem.
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Non-Standard

Figure 51: Coif6 Non-Standard Transform of χ0

Figure 52: Coif6 Non-Standard Transform of d2

dz2
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Figure 53: Coif12 Non-Standard Transform of χ0

Figure 54: Coif12 Non-Standard Transform of d2

dz2

Again the non-standard transform looks promising.
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4.7 Symmlets
Standard

Figure 55: Sym4 Standard Transform of χ0

Figure 56: Sym4 Standard Transform of d2

dz2
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Figure 57: Sym7 Standard Transform of χ0

Figure 58: Sym7 Standard Transform of d2

dz2

The Sym4 seems to do quite well on the χ0 signal, slightly better than the Sym7. The d2

dz2 matrix
continues to transform poorly.
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Packet

Figure 59: Sym4 Packet Transform of χ0

Figure 60: Sym4 Packet Transform of d2

dz2
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Figure 61: Sym7 Packet Transform of χ0

Figure 62: Sym7 Packet Transform of d2

dz2

The symmlet packet transforms are not so bad on the χ0 matrix, compared to other packet
transforms, but the transforms make the d2

dz2 matrix so dense that this transform should be rejected.
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Non-Standard

Figure 63: Sym4 Non-Standard Transform of χ0

Figure 64: Sym4 Non-Standard Transform of d2

dz2
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Figure 65: Sym7 Non-Standard Transform of χ0

Figure 66: Sym7 Non-Standard Transform of d2

dz2

As expected, non-standard transforms are the best of this bunch.

4.8 Densities of Transforms
It is difficult to compare each of the figures listed above. To aid comparison, graphs of measured
density (see Section 4.2) for each wavelet type as the resolution level increases are listed below.
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Figure 67: Density Graph for Different Resolution Standard Transforms of χ0

This quantitatively shows how wavelets of longer support generally better suit the χ0 matrix. You
can see here that the best standard transform is the Sym7, though the Sym4, Daub20, Daub10 and
Coif12 are all not far behind. Also, it is evident that the best resolution for all of these transforms
is 2 or 3. Higher resolutions tend to increase the density.
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Figure 68: Density Graph for Different Resolution Standard Transforms of d2

dz2

Here we see how the d2

dz2 matrix reacts badly to the transform, becoming more dense. As
opposed to the χ0 matrix, longer support here makes things worse for every resolution level.
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Packet
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Figure 69: Density Graph for Different Resolution Packet Transforms of χ0

We can see here that the densities don’t dive as sharply as they did for the standard transform.
Also, transform resolutions above 2 make the density much worse, and high resolutions have
densities about 150% of the original matrix’s density.
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Figure 70: Density Graph for Different Resolution Packet Transforms of d2

dz2

As before, the d2

dz2 matrix gets more dense, but the numbers here are five times larger. The
packet transform is not acceptable for our problem.

Interestingly, the Haar packet transform’s density seems to dip slightly at its maximum reso-
lution for both the χ0 and the d2

dz2 matrices. Why this is the case is unclear.
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Non-Standard
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Figure 71: Density Graph for Different Resolution Non-Standard Transforms of χ0

The non-standard transform seems to behave similarly to the standard transform for χ0, except
at higher resolution levels where the densities of standard transforms slightly increase but the
densities non-standard transforms stay reasonably constant.
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Figure 72: Density Graph for Different Resolution Non-Standard Transforms of d2

dz2

The non-standard transform of d2

dz2 is similar in this respect, but slightly better than the
standard transform due to the extra levelling-off of densities by decoupling the resolutions.

Considering that the size of the matrix changes for each resolution in the non-standard system
it may be better to consider the ratio of the density function to the number of entries in the matrix
(see Section 4.2).
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Figure 73: Density Ratio Graph for Different Resolution Non-Standard Transforms of χ0

In this graph the decreasing nature of the χ0 matrix is more pronounced. We can see how the
lower levels decrease rapidly, due to the matrix expanding a greater amount at those levels.
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Figure 74: Density Ratio Graph for Different Resolution Non-Standard Transforms of d2

dz2

This is much more encouraging. It looks like after a small bump in relative density at the first
couple of levels, higher levels generally taper down and in some cases go below the relative density
of the original. The Daub4 and Haar both do this. The Coif6 and Daub6 slightly increase the
relative densities, and the other transforms markedly increase densities.

5 Discussion
In the d2

dz2 transform “dots” of significant values will commonly appear at the side and corners of
the region being transformed in any particular resolution level. These values are likely due to the
periodic nature of the wavelet coefficients interacting with the non-periodicity of the d2

dz2 matrix.
It is possible that a specially constructed d2

dz2 matrix might alleviate this problem.
There is a relationship between support length and the response of χ0 and d2

dz2 , evidenced by
the density graphs in the previous section. χ0 transforms better with longer support, and d2

dz2

transforms better with shorter support. This competing behaviour makes it difficult to chose a
suitable basis — we need one that fits somewhere in between.

For every wavelet type, standard transforms work well on χ0, with minimal densities at res-
olution levels 2 and 3, but poorly on d2

dz2 , with densities rapidly increasing for each resolution
level. Packet transforms of d2

dz2 are much worse than standard transforms, with densities about
five times greater. Packet transforms of χ0 have similar densities for 2 and 3 level resolutions, but
higher resolutions increase densities dramatically, even beyond the original matrix density. Packet
transforms also tend to spread significant values further from the diagonal, thus increasing the
difficulty to invert the matrix.

Non-standard transforms are the best. They keep the density of the d2

dz2 matrix reasonably
stable for wavelets of shorter support, especially when compared to other transforms, while making
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the χ0 matrix notably sparse. Non-standard transforms of d2

dz2 are at least on par with standard
transforms, and are much better than packet transforms of d2

dz2 .
The Daub4 non-standard transform with a resolution ≥ 2 seems to be the best of both worlds.

Its support is relatively short, but it transforms the χ0 on par with the Coif6, and not far from
the Daub6 non-standard. Also, the Daub4 transforms χ0 to less than half of its original density,
solving one part of our problem. d2

dz2 , the other part of our problem, is also treated reasonably
well with the Daub4 non-standard transform.

6 Future Investigation
6.1 Actual Solution of the Problem
This project stops short of actually solving the original equation using the transforms described.
The logical next step is to go ahead and carry out this solution. From there, χ and then the
groundstate electron energy can be calculated.

6.2 Optimisation of Code
As this project is more a “proof-of-concept” the code used is not as optimised as it could or should
be to generate a real solution. The code currently employs matrix multiplication to perform
wavelet transforms, but a customised iterative algorithm would likely be much more efficient.
Other areas that could be investigated to improve code performance include parallelisation of the
algorithms used, and the use of the Fast Wavelet Transform algorithm [6, p. 13].

6.3 Advanced Wavelet Theory
The aim here was to find a wavelet transform that would make both the χ0 and the d2

dz2 matrices
less sparse. We have seen that there are wavelet bases that can do this quite well for the χ0 signal,
but they do not perform so well for the d2

dz2 signal. It should be noted that a useful transform of
a d2

dz2 matrix has already been accomplished [5], so by the fact that we know it is feasible that
a wavelet transform can produce sparser χ0 matrices we can be optimistic about the possible
uses of the advanced wavelet theory used by Goedecker in his solution of the Coulomb problem
[5]. There is a bulk of wavelet theory that was not covered in this project, including biorthogonal,
lifted, or “second-generation” wavelets, wavelets that are not compactly supported, spline wavelets
[1], continuous, and even truly 2- or 3-dimensional wavelets [8]. There is also the possibility of
designing new wavelets to specifically solve this problem.

6.4 Expanding the Use of Wavelets Into Systems of Higher Dimensions
If wavelet theory proves to be useful, and the transforms performed in this project indicates that
it is, expanding the use of wavelets to solve real world systems will become the ultimate goal.
Such an expansion will likely require 3-dimensional wavelets.

7 Conclusion
The solution of van der Waals forces through the adiabatic connection-fluctuation-dissipation
theorem employing the random phase approximation method produces matrices that are not easy
to invert. This project has shown that, through the use of wavelet bases, some of the sparseness
of the d2

dz2 matrix necessary in the solution can, in a sense, be sacrificed to make the dense χ0
matrix, also necessary, more sparse. The resulting densities for the Daub4 non-standard transform
are such that the pair of resultant matrices appears to be in total less dense, thus easier to solve,
than the original matrices. Even on its own this is a useful result, but it is also a strong indicator
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of the power of more advanced wavelet theory and transformation techniques. Investigating these
appears as though it would be of value. Though it is too early to tell for sure, the results of this
project suggest that wavelet analysis may have found yet another application in physics. If so, the
solution of van der Waals forces in soft matter may become more practicable.
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Appendices
Appendix A: The Mysterious Wavelet
During the execution of this project a “wavelet” was discovered that seemed to produce highly
sparse transforms of both the χ0 and d2

dz2 matrices. The coefficients were found at http://cvs.
sourceforge.net/viewcvs.py/snd/cvs-snd/snd-fft.c?rev=1.217&view=markup. It has since
become evident that the coefficients used were not what they claimed to be. Originally labelled a
“sym3” wavelet, it is now known that it is not a symmlet as originally thought. Early investigation
suggests that it is in fact a biorthogonal spline wavelet with Ñ = 3 and N = 1 [1, pp. 271-278].
The results of its transform are displayed here.

Note The following data is suspect. More investigation into the coefficients used in order to
determine if they form a true wavelet basis is required before this particular transform
might be taken seriously. The effect of biorthogonal wavelets to this problem has yet to be
determined, and the mechanism used to construct the W coefficients from the V coefficients
is almost certainly wrong. Nevertheless, it is listed here in case it turns out to be useful.
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A1: The Wavelet

The code used to generate the “wavelet”, and hence its coefficients, is listed below.

% Create Unknown scaling and wavelet coefficients for signal of length len.
function [V11, W11] = sym3(len)

V11 = zeros(1, len);
V11(1) = 0.1767767;
V11(2) = 0.5303301;
V11(3) = 0.5303301;
V11(4) = 0.1767767;
W11 = zeros(1, len);
W11(1) = V11(4);
W11(2) = -V11(3);
W11(3) = V11(2);
W11(4) = -V11(1);

end
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Figure 75: Sym3 Wavelet

A2: Standard Transforms

Figure 76: Sym3 Standard Transform of χ0
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Figure 77: Sym3 Standard Transform of d2

dz2

A3: Packet Transforms

Figure 78: Sym3 Packet Transform of χ0
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Figure 79: Sym3 Packet Transform of d2

dz2

A4: Non-Standard Transforms

Figure 80: Sym3 Non-Standard Transform of χ0
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Figure 81: Sym3 Non-Standard Transform of d2

dz2

The transforms behave similarly to what we have already seen, only better.

A5: Densities of Transforms

Level Standard Density Packet Density NS Density NS Density Ratio
1 3127.56 3127.56 3127.56 0.1908910
2 1915.97 1892.22 1925.25 0.0522257
3 1621.40 1596.65 1755.29 0.0349826
4 1622.21 1594.88 1764.52 0.0306340
5 1663.43 1980.08 1766.43 0.0287206
6 1641.36 2863.75 1766.43 0.0278160

Table 1: Sym3 Density for Different Resolutions of χ0

Level Standard Density Packet Density NS Density NS Density Ratio
1 648 648 648 0.0395508
2 932 1236 912 0.0247396
3 1330.15 2543.71 1044.15 0.0208098
4 1586.33 4570.54 1111.5 0.0192968
5 1613.71 7248.85 1120.29 0.0182149
6 1639.03 13145.20 1118.35 0.0176107

Table 2: Sym3 Density for Different Resolutions of d2

dz2

The density figures listed here are generally lower than any other transform shown in this report.
If this “sym3” were in fact a proper wavelet basis it would be a very good choice for this problem.
Unfortunately, this may not be the case.
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Appendix B: Source Code Employed in this Project
Code for this project was written for the free open-source Matlab-like system called “Octave”.
Octave programs are very similar to Matlab programs, but there are small differences. Converting
this code into Matlab code should for the most part be trivial. All wavelet coefficients used can
be found in Daubechies [1].

B1: Measuring Density (density.m)

% density(matrix, threshold)
% This gives a crude approximation of how easy a matrix is to solve.
% The higher the number, the more non-zero elements are in the matrix.
% To get the ratio of how many elements are greater than the threshold,
% divide this by the matrix area.
function res = density(matrix, threshold)

res = 0;
[r, c] = size(matrix);
for i = 1:r

for j = 1:c
x = abs(matrix(i, j)) / threshold;
if x < 1

res += x;
else

res += 1;
end

end
end

end

B2: Reading χ0 Data (readch0.m)

% readch0(file) reads the given file the contains the usual expected Chi0
% format to produce a square matrix of the Chi0 signal.
function ret = readch0(file)

[fid, msg] = fopen(file, ’rt’, ’native’);
% Ignore IDs and some stuff
fgetl(fid);
fgetl(fid);
fgetl(fid);
fgetl(fid);
% Read start, step, num
[start, step, num] = fscanf(fid, ’%d %d %d’, ’C’);
fgetl(fid);
range = start:step:(num * step + start - 1);
ret = zeros(num);
% NOTE: Chi0 is symmetric in i, j.
for i = range

p = fscanf(fid, ’%d’, ’C’);
fgetl(fid);
for j = range

ret(i, j) = fscanf(fid, ’%d’, ’C’) * 10**p;
end

end
fclose(fid);
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end

B3: Generating d2

dz2 Data (makediffop.m)

Note: The following function produces a d
dz operator matrix. Multiply this matrix with itself to

find a d2

dz2 matrix.

% makediffop(size)
% Makes a differentiation matrix operation
% returns square matrix of size, uses central difference method.
% To get d2/dx2, square this matrix.
function ret = makediffop(size)

% diag with an offset extends the matrix to use all the elements,
% thus give it one less element to make sure we get the right size
ret = (diag(-ones(1, size - 1), -1) + diag(ones(1, size - 1), 1)) ./ 2;

end

B4: Creating a Wavelet Transform Matrix (matlet.m)

% matlet(basis, len, res) creates a transformation matrix that will
% perform a wavelet transform in the given basis of resolution res on a signal
% of lenth len.
% basis must be a string giving the name of the basis to be used.
function ret = matlet(basis, len, res)

halflen = len / 2;
ret = zeros(len);
[V11, W11] = feval(basis, len);
ret(1, :) = V11;
ret(halflen + 1, :) = W11;
for i = 2:halflen

ret(i, :) = shift(ret(i - 1, :), 2);
ret(i + halflen, :) = shift(ret(i + halflen - 1, :), 2);

end

% Yay recursion!
if res > 1

next = matlet(basis, halflen, res - 1);
ret = expand(next, len) * ret;

end
end

B5: Creating a Wavelet Packet Transform Matrix
(matlet_packet.m)

% matlet_packet(basis, len, res) creates a transformation matrix that will
% perform a wavelet packet transform in the given basis of resolution res on a
% signal of lenth len.
function ret = matlet_packet(basis, len, res)

% this is really easy, just apply matlet to itself res times
ret = matlet(basis, len, 1)^res;

end

B6: Expanding a Matrix Operator (expand.m)

% expand(matrix, size) resizes a square matrix by copying it to
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% the top corner of an identity matrix of given size.
function ret = expand(m, s)

ret = zeros(s);
[r, c] = size(m);
for i = 1:s

for j = 1:s
if (i <= r && j <= c)

ret(i, j) = m(i, j);
elseif (i == j)

ret(i, j) = 1;
else

ret(i, j) = 0;
end

end
end

end

B7: Performing a Wavelet Transform on a Matrix
(transformch0.m)

% transformch0(data, basis, res) performs a wavelet transform of given
% basis and resolution res on the given data, a square matrix (most
% often the Chi0 signal).
function ret = transformch0(data, basis, res)

[rows, cols] = size(data);
ret = zeros(rows, cols);
m = matlet(basis, cols, res);
for i = 1:rows

ret(i, :) = transpose(m * transpose(data(i, :)));
end
for i = 1:cols

ret(:, i) = m * ret(:, i);
end

end

B8: Performing a Wavelet Packet Transform on a Matrix
(packettransformch0.m)

% packettransformch0(data, basis, res) performs the wavelet packet
% transform of given basis and resolution res on the given data, a square
% matrix (most often the Chi0 signal).
function ret = packettransformch0(data, basis, res)

[rows, cols] = size(data);
ret = zeros(rows, cols);
m = matlet_packet(basis, cols, res);
for i = 1:rows

ret(i, :) = transpose(m * transpose(data(i, :)));
end
for i = 1:cols

ret(:, i) = m * ret(:, i);
end

end
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B9: Performing a Wavelet Non-Standard Transform on a Matrix (nstransformch0.m)

% nstransformch0(data, basis, res) performs the non-standard wavelet
% transform of given basis and resolution res on the given data, a square
% matrix (most often the Chi0 signal).
function ret = nstransformch0(data, basis, res)

if (res == 0)
% there is no 0th level! no transform.
ret = data;
return

end

if (res == 1)
% dont need to expand the matrix for last level
ret = transformch0(data, basis, 1);
return

end

% insert the zeros
% endcols = cols * (1 - 0.5^(res)) / 0.5
% from sum of GP
[rows, cols] = size(data);
outrows = 2 * rows * (1 - 0.5^(res));
outcols = 2 * cols * (1 - 0.5^(res));
ret = zeros(outrows, outcols);
datat = transformch0(data, basis, 1);
for i = 1:rows

ret((outrows - rows + i), (outcols - cols / 2 + 1):outcols) \
= datat(i, (cols / 2 + 1):cols);

end
for i = 1:(cols/2)

ret((outrows - rows / 2 + 1):outrows, (outcols - cols + i)) \
= datat((rows / 2 + 1):rows, i);

end
ret(1:(outrows - rows), 1:(outcols - cols)) \

= nstransformch0(datat(1:(rows / 2), 1:(cols / 2)), basis, res - 1);
end

B10: Recording Transformation Data (savetransform.m)

% savetransform(name, data)
% makes files name.[data|png]
function savetransform(name, data)

% the in-built save function does not like dynamic generated
% filenames, so we have to use our own little format:
% First is number of columns rows newline
% then a row newline, another row newline, etc
f = fopen(strcat(name, ’.data’), ’w’);
[h, w] = size(data);
fprintf(f, ’%d %d\n’, w, h);
for i = 1:h

for j = 1:w
fprintf(f, ’%g ’, data(i, j));

end

54



fprintf(f, ’\n’);
end
fclose(f);
% end hack

threshold = 1e-4;

% save the extremes for easy lookup
f = fopen(strcat(name, ’.extrema’), ’w’);
little = min(transpose(min(data)));
big = max(transpose(max(data)));
dens = density(data, threshold);
densrat = dens / rows(data) / columns(data);
fprintf(f, ’min: %g\nmax: %g\ndensity: %g\ndensity ratio: %g’,

little, big, dens, densrat);
fclose(f);

% make some pictures
% scale the result to something reasonable
im = imagesc(data);
savepng(strcat(name, ’.png’), im);
% also save a significance map
% change the colormap to nice grays
cm = colormap();
colormap(1 - gray());
im = imagesc(abs(data), [0, threshold]);
savepng(strcat(name, ’_sigmap.png’), im);
colormap(cm);

end

function savepng(name, im)
saveimage(’temp.ppm’, im, ’ppm’);
% This is probably NOT portable. Uses an ImageMagick program to covert
% images into the more disk-space-friendly PNG format.
system(strcat(’convert temp.ppm ’, name, ’; rm temp.ppm’));

end

B11: Generating Density-Graph Data (buildresgraph.m)

% buildresgraph(prefix, bases, levels, type)
% eg buildresgraph(’transforms/CH0REc’, [’haar’; ’daub4’; ’daub6’; \
% ’daub10’; ’daub20’; ’coif6’; ’coif12’; ’sym4’; ’sym7’], \
% [1, 2, 3, 4, 5, 6, 7], ’ns’)
% Reads previously calculated extrema/density data and builds data for two
% line graphs showing density and density ratios of wavelet transforms as the
% resolutions changes over the given bases. Also includes the stats of the
% original. If a file for a resolution doesn’t exist, ’X’ will be put in the
% place of the data output for that res.
function buildresgraph(prefix, bases, levels, type)

dendata = zeros(rows(bases), levels + 1);
ratdata = zeros(rows(bases), levels + 1);

[dendata(:, 1), ratdata(:, 1)] = readdensity(strcat(prefix, ’.extrema’));

55



for j = 1:rows(bases)
% try to get rid of trailing whitespace
% thats added to make the matrix rectangular
[base, n] = sscanf(bases(j, :), ’%s’);

for i = 1:length(levels)
% load the stuff
s = sprintf(’%d’, i);
name = strcat(prefix, ’_’, base, ’_’, s);
if type != ’’

name = strcat(name, type);
end
name = strcat(name, ’.extrema’);
[dens, rat] = readdensity(name);
dendata(j, i + 1) = dens;
ratdata(j, i + 1) = rat;

end
end

dname = strcat(prefix, ’_density’);
rname = strcat(prefix, ’_dratio’);
if type != ’’

dname = strcat(dname, ’_’, type);
rname = strcat(rname, ’_’, type);

end

writegraphdata(strcat(dname, ’.data’), bases, dendata);
writegraphdata(strcat(rname, ’.data’), bases, ratdata);

end

function [d, r] = readdensity(name)
f = fopen(name, ’rt’);
if f == -1

d = -1;
r = -1;
return;

end
fgetl(f);
fgetl(f);
[data, krap] = fscanf(f, ’density: %g\ndensity ratio: %g’);
fclose(f);
d = data(1);
r = data(2);

end

function writegraphdata(name, bases, data)
f = fopen(name, ’w’);
[nbases, nlevels] = size(data);

fprintf(f, ’# l ’);
for i = 1:nbases

fprintf(f, ’%s ’, bases(i, :));
end
fprintf(f, ’\n’);
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for i = 1:nlevels
fprintf(f, ’%d ’, i - 1);
for j = 1:nbases

x = data(j, i);
if x != -1

fprintf(f, ’%g ’, data(j, i));
else

fprintf(f, ’X ’);
end

end
fprintf(f, ’\n’);

end
fclose(f);

end

B12: Performing a Set of Transforms (dotransforms.m)

% dotransforms(prefix, method, data, [base; base; ...], [level, level, ...])
% makes files: prefix_base_levelM.[data|png]
% M may be nothing, ’packet’, or ’ns’, corresponding to method
% methods are: ’normal’, ’packet’, ’nonstandard’, or ’all’
function dotransforms(prefix, method, data, bases, levels)

if (~strcmp(method, ’normal’) && ~strcmp(method, ’packet’) \
&& ~strcmp(method, ’nonstandard’) && ~strcmp(method, ’all’))
printf(’Please specify a method; normal, packet, or nonstandard.\n’);
return

end

% The rest
datat = data;
name = ’’;
for j = 1:rows(bases)

% try to get rid of trailing whitespace
% thats added to make the matrix rectangular
[base, n] = sscanf(bases(j,:), ’%s’);
printf(’Doing base %s level ’, base);
fflush(stdout);
for i = 1:length(levels)

printf(’%d ’, levels(i));
fflush(stdout);
if (strcmp(method, ’normal’) || strcmp(method, ’all’))

datat = transformch0(data, base, levels(i));
name = strcat(prefix, ’_’, base, ’_’, int2str(levels(i)));
savetransform(name, datat);

end
if (strcmp(method, ’packet’) || strcmp(method, ’all’))

datat = packettransformch0(data, base, levels(i));
name = strcat(prefix, ’_’, base, ’_’, \

int2str(levels(i)), ’packet’);
savetransform(name, datat);

end
if (strcmp(method, ’nonstandard’) || strcmp(method, ’all’))

datat = nstransformch0(data, base, levels(i));
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name = strcat(prefix, ’_’, base, ’_’, int2str(levels(i)), ’ns’);
savetransform(name, datat);

end
end
printf(’\n’);

end
end

B13: The Haar Wavelet (haar.m)

% Create Haar scaling and wavelet coefficients for signal of length len.
function [V11, W11] = haar(len)

V11 = zeros(1, len);
V11(1) = 1 / sqrt(2);
V11(2) = 1 / sqrt(2);
W11 = zeros(1, len);
W11(1) = V11(2);
W11(2) = -V11(1);

end

B14: The Daub4 Wavelet (daub4.m)

% Create Daub4 scaling and wavelet coefficients for signal of length len.
function [V11, W11] = daub4(len)

rt2t4 = sqrt(2) * 4;
rt3 = sqrt(3);
V11 = zeros(1, len);
V11(1) = (1 + rt3) / rt2t4;
V11(2) = (3 + rt3) / rt2t4;
V11(3) = (3 - rt3) / rt2t4;
V11(4) = (1 - rt3) / rt2t4;
W11 = zeros(1, len);
W11(1) = V11(4);
W11(2) = -V11(3);
W11(3) = V11(2);
W11(4) = -V11(1);

end

B15: The Daub6 Wavelet (daub6.m)

% Create Daub6 scaling and wavelet coefficients for signal of length len.
function [V11, W11] = daub6(len)

V11 = zeros(1, len);
V11(1) = 0.332670552950083;
V11(2) = 0.806891509311092;
V11(3) = 0.459877502118491;
V11(4) = -0.135011020010255;
V11(5) = -0.0854412738820267;
V11(6) = 0.0352262918857095;
W11 = zeros(1, len);
W11(1) = V11(6);
W11(2) = -V11(5);
W11(3) = V11(4);
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W11(4) = -V11(3);
W11(5) = V11(2);
W11(6) = -V11(1);

end

B16: The Daub10 Wavelet (daub10.m)

% Create Daub10 scaling and wavelet coefficients for signal of length len.
% This is just one kind of Daub10, pilfered from Goedecker
function [V11, W11] = daub10(len)

% todo
V11 = zeros(1, len);
V11(1) = 0.1601023979741929;
V11(2) = 0.6038292697971897;
V11(3) = 0.7243085284377729;
V11(4) = 0.1384281459013207;
V11(5) = -0.2422948870663820;
V11(6) = -0.0322448695846384;
V11(7) = 0.0775714938400457;
V11(8) = -0.0062414902127983;
V11(9) = -0.0125807519990820;
V11(10) = 0.0033357252854738;
W11 = zeros(1, len);
W11(1) = V11(10);
W11(2) = -V11(9);
W11(3) = V11(8);
W11(4) = -V11(7);
W11(5) = V11(6);
W11(6) = -V11(5);
W11(7) = V11(4);
W11(8) = -V11(3);
W11(9) = V11(2);
W11(10) = -V11(1);

end

B17: The Daub20 Wavelet (daub20.m)

% Create Daub20 scaling and wavelet coefficients for signal of length len.
function [V11, W11] = daub20(len)

V11 = zeros(1, len);
V11(1) = 2.66700579005555535866174487713e-02;
V11(2) = 1.88176800077691489020892973679e-01;
V11(3) = 5.27201188931725586481744827959e-01;
V11(4) = 6.88459039453603565741871782549e-01;
V11(5) = 2.81172343660577460748726998445e-01;
V11(6) = -2.4984642432731537941610189792e-01;
V11(7) = -1.9594627437737704350429925431e-01;
V11(8) = 1.27369340335793260082677233201e-01;
V11(9) = 9.30573646035723511603522898354e-02;
V11(10) = -7.139414716639708714533609307e-02;
V11(11) = -2.945753682187581285828323760e-02;
V11(12) = 3.3212674059341001739763653182e-02;
V11(13) = 3.6065535669561696554232914171e-03;
V11(14) = -1.073317548333057504431811410e-02;
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V11(15) = 1.3953517470529011657893184479e-03;
V11(16) = 1.9924052951850561171587422426e-03;
V11(17) = -6.858566949597116265613709819e-04;
V11(18) = -1.164668551292854509514809710e-04;
V11(19) = 9.3588670320069591334050130342e-05;
V11(20) = -1.326420289452124481243667531e-05;
W11 = zeros(1, len);
W11(1) = V11(20);
W11(2) = -V11(19);
W11(3) = V11(18);
W11(4) = -V11(17);
W11(5) = V11(16);
W11(6) = -V11(15);
W11(7) = V11(14);
W11(8) = -V11(13);
W11(9) = V11(12);
W11(10) = -V11(11);
W11(11) = V11(10);
W11(12) = -V11(9);
W11(13) = V11(8);
W11(14) = -V11(7);
W11(15) = V11(6);
W11(16) = -V11(5);
W11(17) = V11(4);
W11(18) = -V11(3);
W11(19) = V11(2);
W11(20) = -V11(1);

end

B18: The Coif6 Wavelet (coif6.m)

% Create Coif6 scaling and wavelet coefficients for signal of length len.
function [V11, W11] = coif6(len)

if len < 6
disp(’Can\’t make coiflet that short!’);
% Force an error.
x(-1) = 0;

end

rt2t16 = sqrt(2) * 16;
rt7 = sqrt(7);
V11 = zeros(1, len);
V11(len - 1) = (1 - rt7) / rt2t16;
V11(len) = (5 + rt7) / rt2t16;
V11(1) = (14 + 2 * rt7) / rt2t16;
V11(2) = (14 - 2 * rt7) / rt2t16;
V11(3) = (1 - rt7) / rt2t16;
V11(4) = (-3 + rt7) / rt2t16;
W11 = zeros(1, len);
W11(len - 1) = V11(4);
W11(len) = -V11(3);
W11(1) = V11(2);
W11(2) = -V11(1);
W11(3) = V11(len);
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W11(4) = -V11(len - 1);
end

B19: The Coif12 Wavelet (coif12.m)

% Create Coif12 scaling and wavelet coefficients for signal of length len.
function [V11, W11] = coif12(len)

if len < 12
disp(’Can\’t make coiflet that short!’);
% Force an error.
x(-1) = 0;

end

V11 = zeros(1, len);
V11(len - 3) = 0.011587596739;
V11(len - 2) = -0.029320137980;
V11(len - 1) = -0.047639590310;
V11(len) = 0.273021046535;
V11(1) = 0.574682393857;
V11(2) = 0.294867193696;
V11(3) = -0.054085607092;
V11(4) = -0.042026480461;
V11(5) = 0.016744410163;
V11(6) = 0.003967883613;
V11(7) = -0.001289203356;
V11(8) = -0.000509505399;
V11 = V11 .* sqrt(2);
W11 = zeros(1, len);
W11(len - 3) = V11(8);
W11(len - 2) = -V11(7);
W11(len - 1) = V11(6);
W11(len) = -V11(5);
W11(1) = V11(4);
W11(2) = -V11(3);
W11(3) = V11(2);
W11(4) = -V11(1);
W11(5) = V11(len);
W11(6) = -V11(len - 1);
W11(7) = V11(len - 2);
W11(8) = -V11(len - 3);

end

B20: The Sym4 Wavelet (sym4.m)

% Create Sym4 scaling and wavelet coefficients for signal of length len.
function [V11, W11] = sym4(len)

V11 = zeros(1, len);
V11(1) = -0.107148901418;
V11(2) = -0.041910965125;
V11(3) = 0.703739068656;
V11(4) = 1.136658243408;
V11(5) = 0.421234534204;
V11(6) = -0.140317624179;
V11(7) = -0.017824701442;
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V11(8) = 0.045570345896;
V11 = V11 ./ sqrt(2);
W11 = zeros(1, len);
W11(1) = V11(8);
W11(2) = -V11(7);
W11(3) = V11(6);
W11(4) = -V11(5);
W11(5) = V11(4);
W11(6) = -V11(3);
W11(7) = V11(2);
W11(8) = -V11(1);

end

B21: The Sym7 Wavelet (sym7.m)

% Create Sym7 scaling and wavelet coefficients for signal of length len.
function [V11, W11] = sym7(len)

V11 = zeros(1, len);
V11(1) = 0.003792658534;
V11(2) = -0.001481225915;
V11(3) = -0.017870431651;
V11(4) = 0.043155452582;
V11(5) = 0.096014767936;
V11(6) = -0.070078291222;
V11(7) = 0.024665659489;
V11(8) = 0.758162601964;
V11(9) = 1.085782709814;
V11(10) = 0.408183939725;
V11(11) = -0.198056706807;
V11(12) = -0.152463871896;
V11(13) = 0.005671342686;
V11(14) = 0.014521394762;
V11 = V11 ./ sqrt(2);
W11 = zeros(1, len);
W11(1) = V11(14);
W11(2) = -V11(13);
W11(3) = V11(12);
W11(4) = -V11(11);
W11(5) = V11(10);
W11(6) = -V11(9);
W11(7) = V11(8);
W11(8) = -V11(7);
W11(9) = V11(6);
W11(10) = -V11(5);
W11(11) = V11(4);
W11(12) = -V11(3);
W11(13) = V11(2);
W11(14) = -V11(1);

end
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