When constructing an optical system for communicating using polarized photons, it's critical that components and subsystems be accurately and comprehensively characterized. Especially so if that system is designed to be sent into space, where any corrections after the fact are, at best, extremely difficult (just ask Hubble). With this in mind, we developed a polarization characterization platform for optical devices based on an imaging polarimeter attached to a six-axis robot arm. In this paper, we describe the device and its performance for characterizing some sample test devices, including a large lens designed for a quantum optical transmitter to a receiver satellite.